Issue 4, 2023

QbD-based fabrication of transferrin-anchored nanocarriers for targeted drug delivery to macrophages and colon cells for mucosal inflammation healing

Abstract

Colon mucosal inflammation attracts a plethora of immune cells with overexpressed surface receptors. Colon drug targeting can be aided by exploiting overexpressed cell surface receptors which improve drug site retention for an extended period. We developed Tofacitinib citrate (Tofa) loaded transferrin anchored PLGA nanocarriers (Tofa-P/tfr NCs) via the quality by design (QbD) approach for specific binding to the transferrin receptor (TFR-1/CD71) overexpressed on macrophages and colon epithelial cells. Nanocarriers were produced using a modified emulsion-evaporation method with a protein adsorption technique. The QbD-risk assessment method was adopted to screen the variables impacting the quality of nanocarriers, which were then optimized using the 33 Box–Behnken design of experiment (DOE). The obtained nanocarriers have the desired physicochemical properties, drug entrapment, tfr adsorption, stability, mucoadhesion, and sustained drug release pattern at pH 7.4 (colon pH). In vitro cell-based studies confirmed the cellular biocompatibility and considerable uptake of nanocarriers by colon and macrophage cells; the uptake was diminished by anti-CD71/TFR1 antibodies. Tofa-P/tfr NCs demonstrated good colon targeting potential in the dextran sulfate sodium (DSS) induced ulcerative colitis (UC) model. In vivo therapeutic efficacy against UC was established through restored morphological and histopathological scores, vascular integrity, antioxidant levels, hematological parameters, pro-inflammatory cytokine/marker levels, and microbial indices. Tofa-P/tfr NCs shut down the elevated STAT-1 and TFR-1 levels, demonstrating the enhanced efficacy of the encapsulated drug. Thus, the QbD-driven approach successfully developed Tofa-P/tfr NCs with good potential to mitigate mucosal inflammation by targeting colon and macrophage surface receptors.

Graphical abstract: QbD-based fabrication of transferrin-anchored nanocarriers for targeted drug delivery to macrophages and colon cells for mucosal inflammation healing

Supplementary files

Article information

Article type
Paper
Submitted
21 Oct 2022
Accepted
11 Dec 2022
First published
16 Dec 2022

Biomater. Sci., 2023,11, 1373-1397

QbD-based fabrication of transferrin-anchored nanocarriers for targeted drug delivery to macrophages and colon cells for mucosal inflammation healing

M. Zeeshan, Q. U. Ain, A. Sunny, F. Raza, M. Mohsin, S. Khan, B. Weigmann and H. Ali, Biomater. Sci., 2023, 11, 1373 DOI: 10.1039/D2BM01719A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements