Issue 3, 2023

Direct detection of acetonitrile at the pptv level with photoinduced associative ionization time-of-flight mass spectrometry

Abstract

Photoionization mass spectrometry (PI-MS) has become a versatile tool in the real-time analysis of volatile organic compounds (VOCs) from the atmosphere or exhaled breath. However, some key species, e.g., acetonitrile, are hard to measure due to their higher ionization energies than photon energy. In this study, the direct and sensitive detection of gaseous acetonitrile based on a photoinduced associative ionization (PAI) reaction was investigated with a laboratory-built PAI time-of-flight mass spectrometer (PAI-TOFMS). By doping CH2Cl2 in the photoionization ion source, the mass signal of acetonitrile that cannot be effectively obtained by photoionization appeared with an extremely high intensity through the PAI reaction between acetonitrile, CH2Cl2, and residual H2O in the system. Though the moisture in the sample gas has an evident impact on the detection efficiency of acetonitrile, with a relative signal intensity decreasing from 100% under dry conditions to 60% at saturated relative humidity, excellent detection sensitivity was still obtained for gaseous acetonitrile in different matrixes. The sensitivity calibration experiment showed that the detection sensitivities of acetonitrile in N2 buffer gas, exhaled gas, and outdoor air were 682.4 ± 5.2, 17.0 ± 0.7, and 23.9 ± 0.2 counts pptv−1, respectively, with an analysis time of 10 s. The corresponding 3σ LODs reached 0.22, 8.82, and 6.28 pptv, which are equivalent to 0.40, 16.0, and 11.4 ng m−3. The performance of the PAI-TOFMS was first demonstrated by analyzing exhaled acetonitrile from healthy non-smokers and smokers and continuous monitoring of acetonitrile in outdoor air. In summary, this study provides a new and highly sensitive method for the real-time detection of acetonitrile through mass spectrometry.

Graphical abstract: Direct detection of acetonitrile at the pptv level with photoinduced associative ionization time-of-flight mass spectrometry

Article information

Article type
Paper
Submitted
14 Nov 2022
Accepted
21 Dec 2022
First published
22 Dec 2022

Anal. Methods, 2023,15, 368-376

Direct detection of acetonitrile at the pptv level with photoinduced associative ionization time-of-flight mass spectrometry

K. Jiang, Z. Yu, Z. Wei, S. Cheng, H. Wang, Z. Yan, L. Shan, J. Huang, B. Yang and J. Shu, Anal. Methods, 2023, 15, 368 DOI: 10.1039/D2AY01865A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements