Issue 9, 2023

Ultrasensitive electrochemical sensing platform for miRNA-21 detection based on manganese dioxide-gold nanoparticle nanoconjugates coupled with hybridization chain reaction and horseradish peroxidase signal amplification

Abstract

In this study, an ultrasensitive electrochemical miRNA-21 biosensor is described. Manganese dioxide-gold nanoparticle (MnO2-Au NP) nanoconjugates were employed as sensing base materials, miRNA-21 was selected as a model analyte, and hybridization chain reaction (HCR) was employed to form long DNA concatemers using two different oligonucleotides with a complementary sequence. Thus, lots of biotin were loaded on DNA concatemers and one of them was labelled with biotin at its 3′ terminal. The biosensor was designed as follows: a sulfhydryl-hairpin probe (HP) was first dropped on the surface of the glassy carbon electrode (GCE) modified with MnO2-Au NP nanoconjugates (HP/MnO2-AuNPs/GCE). After it was treated with MCH, the modified electrode was hybridized with miRNA-21, resulting in the loop of HP being opened to form a vertical structure. Subsequently, the modified electrode (miRNA-21/HP/MCH/MnO2-AuNPs/GCE) was incubated with DNA concatemers to form a sandwich structure of HP-miRNA-21-DNA concatemers on the modified electrode surface. Finally, the streptavidin-HRP conjugates were linked to the sandwich structure by specific recognition interaction between biotin and avidin. Differential pulse voltammetry (DPV) was used to measure the electrochemical response of the biosensor in the phosphate-buffered solution (0.10 M PBS, pH 7.0) containing 2.0 mM hydroquinone (HQ) and 1.8 mM H2O2. As a result, a larger reductive signal was obtained at a potential of −0.17 V (vs. SCE). Various experimental conditions were optimized, including solution pH, incubation time, and the amount of DNA concatemers. Under optimal conditions, the biosensor showed good sensing performance, such as a wide linear response range (0.1 fM and 100 nM) and low detection limit (0.063 fM, at S/N = 3). Meanwhile, the biosensor can discriminate single base matched miRNA-21, indicating that the biosensor had good selectivity.

Graphical abstract: Ultrasensitive electrochemical sensing platform for miRNA-21 detection based on manganese dioxide-gold nanoparticle nanoconjugates coupled with hybridization chain reaction and horseradish peroxidase signal amplification

Supplementary files

Article information

Article type
Paper
Submitted
30 Mar 2023
Accepted
02 Apr 2023
First published
05 Apr 2023

Analyst, 2023,148, 2180-2188

Ultrasensitive electrochemical sensing platform for miRNA-21 detection based on manganese dioxide-gold nanoparticle nanoconjugates coupled with hybridization chain reaction and horseradish peroxidase signal amplification

M. Li, T. Zhang and Y. Zhang, Analyst, 2023, 148, 2180 DOI: 10.1039/D3AN00490B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements