Issue 5, 2023

The development of an electropolymerized, molecularly imprinted polymer (MIP) sensor for insulin determination using single-drop analysis

Abstract

An electrochemical sensor for the detection of insulin in a single drop (50 μL) was developed based on the concept of molecularly imprinted polymers (MIP). The synthetic MIP receptors were assembled on a screen-printed carbon electrode (SPCE) by the electropolymerization of pyrrole (Py) in the presence of insulin (the protein template) using cyclic voltammetry. After electropolymerization, insulin was removed from the formed polypyrrole (Ppy) matrix to create imprinting cavities for the subsequent analysis of the insulin analyte in test samples. The surface characterization, before and after each electrosynthesis step of the MIP sensors, was performed using atomic force microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The performance of the developed MIP–SPCE sensor was evaluated using a single drop of solution containing K3Fe(CN)6 and the square-wave voltammetry technique. The MIP–SPCE showed a linear concentration range of 20.0–70.0 pM (R2 = 0.9991), a limit of detection of 1.9 pM, and a limit of quantification of 6.2 pM. The rapid response time to the protein target and the portability of the developed sensor, which is considered a disposable MIP-based system, make this MIP–SPCE sensor a promising candidate for point-of-care applications. In addition, the MIP–SPCE sensor was successfully used to detect insulin in a pharmaceutical sample. The sensor was deemed to be accurate (the average recovery was 108.46%) and precise (the relative standard deviation was 7.23%).

Graphical abstract: The development of an electropolymerized, molecularly imprinted polymer (MIP) sensor for insulin determination using single-drop analysis

Article information

Article type
Paper
Submitted
12 Dec 2022
Accepted
20 Jan 2023
First published
24 Jan 2023
This article is Open Access
Creative Commons BY-NC license

Analyst, 2023,148, 1102-1115

The development of an electropolymerized, molecularly imprinted polymer (MIP) sensor for insulin determination using single-drop analysis

T. Zidarič, D. Majer, T. Maver, M. Finšgar and U. Maver, Analyst, 2023, 148, 1102 DOI: 10.1039/D2AN02025D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements