Issue 5, 2023

Fabrication of high-performance cell-imprinted polymers based on AuNPs/MXene composites via metal-free visible light-induced ATRP

Abstract

Cell-imprinted polymers (CIPs) for yeasts were fabricated via metal-free visible-light-induced atom transfer radical polymerization (MVL ATRP) on the surface of a glassy carbon electrode (GCE) which had been modified with gold nanoparticles (AuNPs)/MXene (Ti3C2Tx) composites. Here, the AuNPs/Ti3C2Tx composites form a macroporous structure, which could improve the electron transfer rate of the materials and facilitate the leaving or rebinding of cells. Methacrylic acid (MAA) and N,N′-methylene bis-acrylamide (MBA) were selected as the functional monomer and cross-linker of CIPs, because they could form efficient hydrogen bonding with mannan from yeast cell walls. The obtained electrode (CIPs/AuNPs/Ti3C2Tx/GCE) was characterized by electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Further experiments indicated that the CIPs/AuNPs/Ti3C2Tx/GCE electrode could be utilized as an electrochemical biosensor to determine yeast cells by differential pulse voltammetry (DPV). The linear response range was 1.0 × 102 to 1.0 × 109 cells per mL and the detection limit was 20 cells per mL (S/N = 3). The CIPs/AuNPs/Ti3C2Tx/GCE electrode also showed good selectivity, repeatability, reproducibility, and regeneration. Finally, the proposed sensor was used to detect yeast cells in commercial samples of Saccharomyces boulardii sachets by a standard addition method. The obtained recovery was from 96.9 to 104.8% showing its potential applications in clinical and diagnostic research.

Graphical abstract: Fabrication of high-performance cell-imprinted polymers based on AuNPs/MXene composites via metal-free visible light-induced ATRP

Supplementary files

Article information

Article type
Paper
Submitted
19 Nov 2022
Accepted
11 Jan 2023
First published
02 Feb 2023

Analyst, 2023,148, 1058-1067

Fabrication of high-performance cell-imprinted polymers based on AuNPs/MXene composites via metal-free visible light-induced ATRP

A. Cui, P. Meng, J. Hu, H. Yang, Z. Yang, H. Li and Y. Sun, Analyst, 2023, 148, 1058 DOI: 10.1039/D2AN01896A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements