Issue 40, 2022

Light-driven microrobots: capture and transport of bacteria and microparticles in a fluid medium

Abstract

The design of simple microrobotic systems with capabilities to address various applications like cargo transportation, as well as biological sample capture and manipulation in an individual unit, provides a novel route for designing advanced multifunctional microscale systems. Here, we demonstrate a facile approach to fabricate such multifunctional and fully controlled light-driven microrobots. The microrobots are titanium dioxide-silica Janus particles that are propelled in aqueous hydroquinone/benzoquinone fuel when illuminated by low-intensity UV light. The application of light provides control over the speed as well as activity of the microrobots. When modified with additional thin film coatings of nickel and gold, the microrobots exhibit the capturing and transportation of silica microparticles and E. coli bacteria. While transporting, they also show guided swimming under an external uniform magnetic field, which is interesting for deciding their moving path or the start/end positions. The fluorescent dye-based live/dead tests confirm that in the microrobot system almost no bacteria were harmed during the capturing or transportation. The simplistic design and steerable swimming with the ability to capture and transport are the important features of the microrobots. These features make them an ideal candidate for in vitro or lab-on-a-chip based studies, e.g., drug delivery, bacterial sensing, cell treatment, etc., where the capturing and transport of microscopic entities play a crucial role.

Graphical abstract: Light-driven microrobots: capture and transport of bacteria and microparticles in a fluid medium

Supplementary files

Article information

Article type
Paper
Submitted
29 Jun 2022
Accepted
09 Sep 2022
First published
11 Sep 2022

J. Mater. Chem. B, 2022,10, 8235-8243

Light-driven microrobots: capture and transport of bacteria and microparticles in a fluid medium

S. Debata, N. A. Kherani, S. K. Panda and D. P. Singh, J. Mater. Chem. B, 2022, 10, 8235 DOI: 10.1039/D2TB01367C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements