Issue 47, 2022

Fluoride-assisted detection of glutathione by surface Ce3+/Ce4+ engineered nanoceria

Abstract

Nanoceria has evolved as a promising nanomaterial due to its unique enzyme-like properties, including excellent oxidase mimetic activity, which significantly increases in the presence of fluoride ions. However, this significant increase in oxidase activity has never been utilised as a signal enhancer for the detection of biological analytes partly because of the lack of understanding of the mechanism involved in this process. In this study, we show that the surface oxidation state of cerium ions plays a very crucial role in different enzymatic activities, especially the oxidase mimetic activity by engineering nanoceria with three different surface Ce4+/Ce3+ compositions. Using DFT calculations combined with Bader charge analysis, it is demonstrated that stoichiometric ceria registers a higher oxidase mimetic activity than oxygen-deficient ceria with a low Ce4+/Ce3+ ratio due to a higher charge transfer from a substrate, 3,3′,5,5′ tetramethylbenzidine (TMB), to the ceria surface. We also show that the fluoride ions can significantly increase the charge transfer from the TMB surface to ceria irrespective of the surface Ce4+/Ce3+ ratio. Using this knowledge, we first compare the fluoride sensing properties of nanoceria with high Ce4+ and mixed Ce4+/Ce3+ oxidation states and further demonstrate that the linear detection range of fluoride ions can be extended to 1–10 ppm for nanoceria with mixed oxidation states. Then, we also demonstrate an assay for fluoride assisted detection of glutathione, an antioxidant with elevated levels during cancer, using nanoceria with a high surface Ce4+/Ce3+ ratio. The addition of fluoride ions in this assay allows the detection of glutathione in the linear range of 2.5–50 ppm with a limit of detection (LOD) of 3.8 ppm. These studies not only underpin the role of the surface Ce4+/Ce3+ ratio in tuning the fluoride assisted boost in the oxidase mimetic activity of nanoceria but also its strategic application in designing better colourimetric assays.

Graphical abstract: Fluoride-assisted detection of glutathione by surface Ce3+/Ce4+ engineered nanoceria

Supplementary files

Article information

Article type
Paper
Submitted
30 May 2022
Accepted
03 Nov 2022
First published
04 Nov 2022

J. Mater. Chem. B, 2022,10, 9855-9868

Fluoride-assisted detection of glutathione by surface Ce3+/Ce4+ engineered nanoceria

V. Patel, L. Jose, G. Philippot, C. Aymonier, T. Inerbaev, L. R. McCourt, M. G. Ruppert, D. Qi, W. Li, J. Qu, R. Zheng, J. Cairney, J. Yi, A. Vinu and A. S. Karakoti, J. Mater. Chem. B, 2022, 10, 9855 DOI: 10.1039/D2TB01135B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements