Issue 26, 2022

A sonication-induced silk-collagen hydrogel for functional cartilage regeneration

Abstract

Cartilage tissue has limited self-regeneration capacity and current treatment methods often result in fibrocartilage formation. Although collagen has shown the ability to induce chondrogenesis of mesenchymal stem cells (MSCs) and regenerate hyaline cartilage, the application of a pure collagen hydrogel is inherently limited by its fast degradation, poor mechanical properties and excessive cell-mediated shrinkage. To overcome this challenge, we developed a sonication-induced silk-collagen composite hydrogel (COL + SF(S)) and investigated its physicochemical and biological properties compared with a collagen hydrogel (COL) and a non-sonicated silk-collagen composite hydrogel (COL + SF(NS)). The results showed that the sonication treatment of silk fibroin induced antiparallel β-sheet formation and a stronger negative charge on the silk fibroin molecule, which resulted in improved mechanical properties of the COL + SF(S) hydrogel. The COL + SF(S) hydrogel exhibited superior stability during cell culture and promoted the gene expression of SOX9 at the early stage and sulfated glycosaminoglycan (sGAG) deposition without any exogenous growth factor. Moreover, the cartilage regeneration capacity of the COL + SF(S) group was evaluated in rabbit knee defects. The COL + SF(S) group exhibited well-integrated articular hyaline cartilage closely resembling native articular cartilage after 6 months. Overall, the COL + SF(S) hydrogel holds great potential as a scaffold material to regenerate functional hyaline cartilage.

Graphical abstract: A sonication-induced silk-collagen hydrogel for functional cartilage regeneration

Article information

Article type
Paper
Submitted
17 Mar 2022
Accepted
26 May 2022
First published
30 May 2022

J. Mater. Chem. B, 2022,10, 5045-5057

A sonication-induced silk-collagen hydrogel for functional cartilage regeneration

S. Long, D. Huang, Z. Ma, S. Shi, Y. Xiao and X. Zhang, J. Mater. Chem. B, 2022, 10, 5045 DOI: 10.1039/D2TB00564F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements