Issue 22, 2022

Fabrication of human serum albumin–imprinted photothermal nanoparticles for enhanced immunotherapy

Abstract

Photothermal nanoparticles have been confirmed to induce an antitumor immune response and turn “cold tumor” into “hot tumor”. However, their delivery efficacy to tumors is limited by the elimination from the reticalendothel system. Herein, human serum albumin (HSA)-imprinted polymer coated Fe3O4 nanoparticles (Fe3O4@MIPs) are fabricated by oxidative polymerization of dopamine in the presence of HSA on the polydopamine pre-modified Fe3O4 nanoparticle surface, followed by the removal of HSA. The Fe3O4@MIPs exhibit rapid and specific reabsorption toward HSA. The molecularly imprinted sites on the Fe3O4@MIPs endow it with an albumin-rich protein corona in the blood and result in less elimination from the reticalendothel system than non-albumin-imprinted particles (Fe3O4@NIPs). Moreover, the molecularly imprinted polymer, which consists of polydopamine, also improves the photothermal effect of Fe3O4 nanoparticles. In vivo, the albumin camouflage in Fe3O4@MIPs produces a 2.6-fold improvement in tumor accumulation in comparison to Fe3O4@NIPs, and more heat is produced upon 808 nm laser irradiation, which further triggers an efficient immunogenic cell death (ICD) progress. Thus, the combination of Fe3O4@MIPs and PD-L1 antibody can not only inhibit the growth of primary tumors but also eliminates lung metastasis by eliciting immunological effect.

Graphical abstract: Fabrication of human serum albumin–imprinted photothermal nanoparticles for enhanced immunotherapy

Supplementary files

Article information

Article type
Paper
Submitted
23 Feb 2022
Accepted
03 May 2022
First published
04 May 2022

J. Mater. Chem. B, 2022,10, 4226-4241

Fabrication of human serum albumin–imprinted photothermal nanoparticles for enhanced immunotherapy

J. Ma, Y. Zhang, H. Sun, P. Ding and D. Chen, J. Mater. Chem. B, 2022, 10, 4226 DOI: 10.1039/D2TB00396A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements