Issue 16, 2022

A dual-responsive nanozyme sensor with ultra-high sensitivity and ultra-low cross-interference towards metabolic biomarker monitoring

Abstract

Accurate, sensitive and selective detection of metabolic biomarkers in biofluids are of vital significance for health self-monitoring and chronic disease prevention. Here, for the first time, a smart dual-responsive nanozyme sensor (DNS) was developed for simultaneous analysis of glucose and caffeine utilizing stimuli-responsive yolk–shell gold nanoparticles (GNPs)-embedded MIL-53 (Al) (GNPs@MIL-53) structures. After the introduction of glucose, GNPs@MIL-53 displays excellent glucose oxidase (GOx)-like activity to induce the conversion of glucose to gluconic acid and H2O2. H2O2 can oxidize 3,3′,5,5′-tetramethylbenzidine (TMB) with the generation a bright-blue color, enabling in-field visualization and surface enhanced Raman scattering (SERS) detection of glucose. Upon the addition of caffeine, 2-aminoterephthalic acid modified MIL-53 can react with the caffeine to form intermolecular hydrogen-bonded complexes, leading to strong cyan fluorescence and significant Raman enhancements. The DNS with multi-channel signal outputs can simultaneously determine glucose and caffeine at concentrations of as low as 3 × 10−8 M and 1.2 × 10−11 M, respectively. Importantly, the DNS-based analytical system not only enables visual discrimination and accurate assay of glucose and caffeine in biofluids, but also exhibits negligible cross-interference between glucose and caffeine determination. The combined characteristics of high selectivity, enhanced accuracy and superior quantitative performance make our platform suitable for the point-of-care monitoring of chronic-disease-related metabolic biomarkers.

Graphical abstract: A dual-responsive nanozyme sensor with ultra-high sensitivity and ultra-low cross-interference towards metabolic biomarker monitoring

Supplementary files

Article information

Article type
Paper
Submitted
20 Dec 2021
Accepted
14 Mar 2022
First published
14 Mar 2022

J. Mater. Chem. B, 2022,10, 3023-3031

A dual-responsive nanozyme sensor with ultra-high sensitivity and ultra-low cross-interference towards metabolic biomarker monitoring

X. Wang, Z. Xia, E. K. Fodjo, W. Deng and D. Li, J. Mater. Chem. B, 2022, 10, 3023 DOI: 10.1039/D1TB02796D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements