Issue 32, 2022

Y2Ti2O5S2 – a promising n-type oxysulphide for thermoelectric applications

Abstract

Thermoelectric materials offer an unambiguous solution to the ever-increasing global demand for energy by harnessing the Seebeck effect to convert waste heat to electrical energy. Mixed-anion materials are ideal candidate thermoelectric materials due to their thermal stability and potential for “phonon-glass, electron-crystal” behaviour. In this study, we use density-functional theory (DFT) calculations to investigate Y2Ti2O5S2, a cation-deficient Ruddlesden-Popper system, as a potential thermoelectric. We use hybrid DFT to calculate the electronic structure and band alignment, which indicate a preference for n-type doping with highly anisotropic in-plane and the out-of-plane charge-carrier mobilities as a result of the anisotropy in the crystal structure. We compute phonon spectra and calculate the lattice thermal conductivity within the single-mode relaxation-time approximation using lifetimes obtained by considering three-phonon interactions. We also calculate the transport properties using the momentum relaxation-time approximation to solve the electronic Boltzmann transport equations. The predicted transport properties and lattice thermal conductivity suggest a maximum in-plane ZT of 1.18 at 1000 K with a carrier concentration of 2.37 × 1020 cm−3. Finally, we discuss further the origins of the low lattice thermal conductivity, in particular exploring the possibility of nanostructuring to lower the phonon mean free path, reduce the thermal conductivity, and further enhance the ZT. Given the experimentally-evidenced high thermal stability and the favourable band alignment found in this work, Y2Ti2O5S2 has the potential to be a promising high-temperature n-type thermoelectric.

Graphical abstract: Y2Ti2O5S2 – a promising n-type oxysulphide for thermoelectric applications

Supplementary files

Article information

Article type
Paper
Submitted
24 May 2022
Accepted
29 Jun 2022
First published
04 Jul 2022
This article is Open Access
Creative Commons BY license

J. Mater. Chem. A, 2022,10, 16813-16824

Y2Ti2O5S2 – a promising n-type oxysulphide for thermoelectric applications

K. Brlec, K. B. Spooner, J. M. Skelton and D. O. Scanlon, J. Mater. Chem. A, 2022, 10, 16813 DOI: 10.1039/D2TA04160J

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements