Issue 28, 2022

2D/3D heterostructured CsPbI2Br solar cells: a choice for a monolithic all-perovskite tandem device

Abstract

All-inorganic CsPbI2Br perovskite solar cells (PSCs) have attracted intensive attention owing to their suitable bandgaps and excellent photo- and thermal stability, making them promising ideal top cells in high-performance monolithic all-perovskite tandem solar cells (all-PTSCs). However, CsPbI2Br PSCs are still facing a challenge due to their relatively low power conversion efficiency (PCE) and moisture sensitivity. Herein, a simple and effective in situ growth method was adopted to construct a two-dimensional/three-dimensional (2D/3D) heterostructure by spinning n-butylammonium bromide (BABr) on the top of a 3D CsPbI2Br perovskite film. The such fabricated high-quality 2D/3D CsPbI2Br film exhibits excellent hydrophobicity against moisture invasion, and a well-matched energy level with the hole transport layer (HTL) facilitating hole extraction at the perovskite/HTL interface. As a result, the optimized 2D/3D CsPbI2Br solar cell achieves an excellent PCE of 16.57% with improved stability. Based on this, we developed an all-PTSC having 2D/3D CsPbI2Br and MAPbI3 as the optical absorption layer of top and bottom cells, respectively, along with a solution-processed PEDOT:PSS film with high conductivity and high transmittance as the recombination layer. The fabricated all-PTSC exhibits a PCE of 10.22% and an ultrahigh open-circuit voltage of 2.33 V, approaching the sum of the light voltages of the two sub-cells. Benefiting from the outstanding thermal stability and hydrophobicity of 2D/3D CsPbI2Br, the all-PTSC showed superior stability under heat and air. This work demonstrates that all-inorganic perovskites as the photo-response cores of top cells are appropriate candidates for the fabrication of efficient and stable monolithic all-PTSCs.

Graphical abstract: 2D/3D heterostructured CsPbI2Br solar cells: a choice for a monolithic all-perovskite tandem device

Supplementary files

Article information

Article type
Paper
Submitted
05 May 2022
Accepted
14 Jun 2022
First published
15 Jun 2022

J. Mater. Chem. A, 2022,10, 14799-14809

2D/3D heterostructured CsPbI2Br solar cells: a choice for a monolithic all-perovskite tandem device

L. Yan, Y. Li, S. Li, X. Sun, Y. Li, X. Han, M. Huang and X. Tao, J. Mater. Chem. A, 2022, 10, 14799 DOI: 10.1039/D2TA03627D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements