Pure hydrogen and sulfur production from H2S by an electrochemical approach using a NiCu–MoS2 catalyst†
Abstract
An enormous amount of hydrogen sulfide (H2S) exists in an industrial world primarily as an undesirable waste by-product of fossil fuel processing, including natural gas, petroleum, and coal gasification, entailing a greener strategy for its conversion into more beneficial products viz. hydrogen (H2) and sulfur (S). Herein, we have formulated a cost-effective and mixed-phase (1T and 2H) micro-flower like NiCu–MoS2 catalyst towards the anodic sulfide oxidation reaction (SOR) and cathodic H2 production via electrolysis. The SOR was initiated at 0.21 V vs. RHE, which is 1.02 V inferior to the thermodynamical potential of the oxygen evolution reaction (OER), i.e. 1.23 V. Moreover, it maintains 98.1% H2 faradaic efficiency with remarkable endurance up to 150 h. Importantly when a H2S electrolyzer was fabricated with NiCu–MoS2, only 0.7 V cell potential was adequate to yield profuse H2 by H2S splitting, which is practically unachievable for water splitting due to kinetic and energetic complexity.

Please wait while we load your content...