Issue 24, 2022

Fast explosive performance prediction via small-dose energetic materials based on time-resolved imaging combined with machine learning

Abstract

Fast, reproducible, and quantitative performance evaluation of monomolecular energetic materials (EMs) is a significant challenge that limits the tailored applications of EMs and the development of new high-energy-density materials. Here, a small-dose-based alternative method for the detection of the detonation velocity (DV), heat of detonation (HoD), volume of detonation (VoD), detonation pressure (DP), and detonation temperature (DT) from laser-induced shock-wave images combined with a machine learning algorithm is proposed. On the basis of a comprehensive investigation of the time-resolved plume dynamic behavior and spectral emission properties, we concluded that the exothermic chemical reaction associated with detonation occurred at about 25 μs after the laser pulse termination. Moreover, 27 types of explosives were tested to build the prediction model to validate the proposed theory. Our model accurately predicted the explosion parameters with an average relative error of test set (ARETe) of the models for the DV, VoD, and DT of <5%. In particular, the maximum relative error of test set (MRETe) of the quantitative analysis model for the DV and VoD was less than 4%. Our results demonstrate the value of laser-based micro-explosion technology in an explosion testing system and provide an analytic means for estimation of the detonation performance of EMs in a high-speed, less-consumption, low-cost, high-precision, and practical way.

Graphical abstract: Fast explosive performance prediction via small-dose energetic materials based on time-resolved imaging combined with machine learning

Supplementary files

Article information

Article type
Paper
Submitted
01 Apr 2022
Accepted
29 May 2022
First published
13 Jun 2022

J. Mater. Chem. A, 2022,10, 13114-13123

Fast explosive performance prediction via small-dose energetic materials based on time-resolved imaging combined with machine learning

X. Wang, Y. He, W. Cao, W. Guo, T. Zhang, J. Zhang, Q. Shu, X. Guo, R. Liu and Y. Yao, J. Mater. Chem. A, 2022, 10, 13114 DOI: 10.1039/D2TA02626K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements