Issue 18, 2022

A pseudo-boehmite AlOOH supported NGr composite-based air electrode for mechanically rechargeable Zn-air battery applications

Abstract

Both mechanically and electrically rechargeable zinc-air batteries (ZABs) have received much interest due to their high energy density and suitability for mobile and stationary applications. However, their commercialization has been impeded by the lack of robust, low-cost and environmentally benign catalyst materials that can be easily scaled up. In this context, the present work introduces a new type of transition metal-free catalytic material (AlOOH/NGr) by anchoring the pseudo-boehmite phase of aluminium oxyhydroxide (AlOOH) nanosheets over nitrogen-doped graphene (NGr) via a single-step and straightforward hydrothermal process. Furthermore, density functional theory (DFT) based computation demonstrates that the nucleation of AlOOH starts from the N-sites and points towards the strong surface interaction between AlOOH and NGr via doped nitrogen. AlOOH/NGr consisting of thin layered pseudo-boehmite sheets uniformly distributed over NGr has displayed an oxygen reduction reaction onset potential of 0.83 V and a half-wave potential of 0.72 V, along with good catalytic durability in alkaline medium. With this, AlOOH/NGr, when used as an air electrode for fabricating a primary Zn-air battery, the system has exhibited an open circuit voltage of ∼1.27 V with a flat discharge profile at a current rate of 10 mA cm−2. The fabricated system delivered a specific capacity of ∼720 mA h g−1 and a high power density of 204 mW cm−2 and is comparable to the counterpart system based on the state-of-the-art Pt/C (20 wt% Pt) cathode. Additionally, the homemade battery was able to maintain its performance after 4 times of mechanical recharging of the battery, which lasted for more than 35 h at a discharge current density of 10 mA cm−2. Thus, we have uncovered the potential of an earth-abundant metal-based catalytic system for fabricating and demonstrating a robust mechanically rechargeable zinc-air battery.

Graphical abstract: A pseudo-boehmite AlOOH supported NGr composite-based air electrode for mechanically rechargeable Zn-air battery applications

Supplementary files

Article information

Article type
Paper
Submitted
20 Jan 2022
Accepted
17 Mar 2022
First published
18 Mar 2022

J. Mater. Chem. A, 2022,10, 10014-10025

A pseudo-boehmite AlOOH supported NGr composite-based air electrode for mechanically rechargeable Zn-air battery applications

G. P. Kharabe, N. Manna, A. Nadeema, S. K. Singh, S. Mehta, A. Nair, K. Joshi and S. Kurungot, J. Mater. Chem. A, 2022, 10, 10014 DOI: 10.1039/D2TA00546H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements