Issue 34, 2022

Wetting behavior of polyelectrolyte complex coacervates on solid surfaces

Abstract

The wetting behavior of complex coacervates underpins their use in many emerging applications of surface science, particularly wet adhesives and coatings. Many factors dictate if a coacervate phase will condense on a solid surface, including solution conditions, the nature of the polymer–substrate interaction, and the underlying supernatant–coacervate bulk phase behavior. In this work, we use a simple inhomogeneous mean-field theory to study the wetting behavior of complex coacervates on solid surfaces both off-coexistence (wetting transitions) and on-coexistence (contact angles). We focus on the effects of salt concentration, the polycation/polyanion surface affinity, and the applied electrostatic potential on the wettability. We find that the coacervate generally wets the surface via a first order wetting transition with second order transitions possible above a surface critical point. Applying an electrostatic potential to a solid surface always improves the surface wettability when the polycation/polyanion–substrate interaction is symmetric. For asymmetric surface affinity, the wettability has a nonmonotonic dependence with the applied potential. We use simple scaling and thermodynamic arguments to explain our results.

Graphical abstract: Wetting behavior of polyelectrolyte complex coacervates on solid surfaces

Supplementary files

Article information

Article type
Paper
Submitted
28 Jun 2022
Accepted
11 Aug 2022
First published
11 Aug 2022

Soft Matter, 2022,18, 6326-6339

Author version available

Wetting behavior of polyelectrolyte complex coacervates on solid surfaces

C. Balzer, P. Zhang and Z. Wang, Soft Matter, 2022, 18, 6326 DOI: 10.1039/D2SM00859A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements