Issue 23, 2022

Hydrogel composite mimics biological tissues

Abstract

A novel composite hydrogel was developed that shows remarkable similarities to load bearing biological tissues. The composite gel consisting of a poly(vinyl alcohol (PVA) matrix filled with poly(acrylic acid) (PAA) microgel particles exhibits osmotic and mechanical properties that are qualitatively different from regular gels. In the PVA/PAA system the swollen PAA particles “inflate” the PVA network. The swelling of the PAA is limited by the tensile stress Pel developing in the PVA matrix. Pel increases with increasing swelling degree, which is opposite to the decrease of the elastic pressure observed in regular gels. The maximum tensile stress Pmaxel can be identified as a quantity that defines the load bearing ability of the composite gel. Systematic osmotic swelling pressure measurements have been made on PVA/PAA gels to determine the effects of PVA stiffness, PAA crosslink density, and Ca2+ ion concentration on Pmaxel. It is found that Pmaxel increases with the stiffness of the PVA matrix, and decreases with (i) increasing crosslink density of the PAA and (ii) increasing Ca2+ ion concentration. Small angle neutron scattering (SANS) measurements indicate only a weak interaction between the PVA and PAA gels. It is demonstrated that the osmotic swelling pressure of PVA/PAA composite gels reproduces the osmotic behavior of healthy and osteoarthritic cartilage.

Graphical abstract: Hydrogel composite mimics biological tissues

Article information

Article type
Paper
Submitted
21 Apr 2022
Accepted
22 May 2022
First published
31 May 2022

Soft Matter, 2022,18, 4414-4426

Author version available

Hydrogel composite mimics biological tissues

F. Horkay and P. J. Basser, Soft Matter, 2022, 18, 4414 DOI: 10.1039/D2SM00505K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements