Structures of Cationic and Anionic Polyelectrolytes in Aqueous Solutions: The Sign Effect

Abstract

In this study, we use molecular dynamics simulation to explore the structures of anionic and cationic polyelectrolytes in aqueous solutions. We first confirm the significantly stronger solvation effects of single anions compared to cations in water at the fixed ion radii, due to the reversal orientations of asymmetric dipolar H2O molecules around the ions. Based on this, we demonstrate that the solvation discrepancy of cations/anions and electrostatic correlations of ionic species can synergistically cause the nontrivial structural difference between single anionic and cationic polyelectrolytes. The cationic polyelectrolyte shows an extended structure whereas the anionic polyelectrolyte exhibits a collapsed structure, and their structural differences decline with increasing the counterion size. Furthermore, we corroborate that the multiple cationic polyelectrolytes or multiple anionic polyelectrolytes can exhibit largely differential molecular architectures in aqueous solutions. In the solvation dominant regime, the polyelectrolyte solutions exhibit uniform structures; whereas, in the electrostatic correlation dominant regime, the polyelectrolyte solutions exhibit heterogeneous structures, in which the likely charged chains microscopically aggregate through counterion condensations. Increasing the intrinsic chain rigidity causes the polyelectrolyte extension and hence moderately weakens the inter-chain clustering. Our work highlights the various, unique structures and molecular architectures of polyelectrolytes in solutions caused by the multi-body correlations between polyelectrolytes, counterions and asymmetric dipolar solvent molecules, which provides insights into the fundamental understanding of ion-containing polymers.

Article information

Article type
Paper
Submitted
30 Nov 2021
Accepted
13 Jan 2022
First published
14 Jan 2022

Soft Matter, 2022, Accepted Manuscript

Structures of Cationic and Anionic Polyelectrolytes in Aqueous Solutions: The Sign Effect

C. Lin, H. Wei, H. Li and X. Duan, Soft Matter, 2022, Accepted Manuscript , DOI: 10.1039/D1SM01700D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements