Issue 4, 2022

A phase field model for dynamic simulations of reactive blending of polymers

Abstract

A facile way to generate compatibilized blends of immiscible polymers is through reactive blending of end-functionalized homopolymers. The reaction may be reversible or irreversible depending on the end-groups and is affected by the immiscibility and transport of the reactant homopolymers and the compatibilizing copolymer product. Here we describe a phase-field framework to model the combined dynamics of reaction kinetics, diffusion, and multi-component thermodynamics on the evolution of the microstructure and reaction rate in reactive blending. A density functional with no fitting parameters, which is obtained by adapting a framework of Uneyama and Doi and qualitatively agrees with self-consistent field theory, is used in a diffusive dynamics model. For a symmetric mixture of equal-length reactive polymers mixed in equal proportions, we find that depending on the Flory χ parameter, the microstructure of an irreversibly reacting blend progresses through a rich evolution of morphologies, including from two-phase coexistence to a homogeneous mixture, or a two-phase to three-phase coexistence transitioning to a homogeneous blend or a lamellar copolymer. The emergence of a three-phase region at high χ leads to a previously unreported reaction rate scaling. For a reversible reaction, we find that the equilibrium composition is a function of both the equilibrium constant for the reaction and the χ parameter. We demonstrate that phase-field models are an effective way to understand the complex interplay of thermodynamic and kinetic effects in a reacting polymer blend.

Graphical abstract: A phase field model for dynamic simulations of reactive blending of polymers

Article information

Article type
Paper
Submitted
26 Nov 2021
Accepted
31 Dec 2021
First published
03 Jan 2022

Soft Matter, 2022,18, 877-893

Author version available

A phase field model for dynamic simulations of reactive blending of polymers

M. D. Tikekar, K. T. Delaney, M. C. Villet, D. R. Tree and G. H. Fredrickson, Soft Matter, 2022, 18, 877 DOI: 10.1039/D1SM01686E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements