Issue 12, 2022

Magnetowetting dynamics of sessile ferrofluid droplets: a review

Abstract

The fascinating behavior of ferrofluids in a magnetic field has been intriguing researchers for many years. With the advancement in digital microfluidics, ferrofluid droplets have been extensively used in different applications ranging from biomedical to mechanical systems. Notably, the magnetic field can change the wetting dynamics of sessile ferrofluid droplets, leading to a plethora of interesting hydrodynamic phenomena. In the recent past, the spatiotemporal evolution of the droplet shape and contact line dynamics of a ferrofluid droplet in different magnetowetting scenarios has been explored widely. The relevant studies elucidate several critical aspects, such as the role of magnetic nanoparticles, carrier fluid, and the interaction of the magnetic fluid with the solid surface, among many others. Hence a systematic review of the progress made in understanding the fundamental and practical aspects of magnetowetting in the past decade (2010–2020) would be a helpful resource to the scientific community in the near future. Drawn by this motivation, an honest effort has been made in this Review to highlight the significant scientific findings concerning the sessile droplet magnetowetting phenomena within the timeline of interest. Several cutting-edge applications developed from the scientific findings in the purview of magnetowetting have also been discussed before outlining the conclusions and future areas of scope.

Graphical abstract: Magnetowetting dynamics of sessile ferrofluid droplets: a review

Article information

Article type
Review Article
Submitted
01 Nov 2021
Accepted
29 Jan 2022
First published
04 Mar 2022

Soft Matter, 2022,18, 2287-2324

Magnetowetting dynamics of sessile ferrofluid droplets: a review

R. Deb, B. Sarma and A. Dalal, Soft Matter, 2022, 18, 2287 DOI: 10.1039/D1SM01569A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements