Issue 10, 2022

Effects of alignment activity on the collapse kinetics of a flexible polymer

Abstract

The dynamics of various biological filaments can be understood within the framework of active polymer models. Here we consider a bead-spring model for a flexible polymer chain in which the active interaction among the beads is introduced via an alignment rule adapted from the Vicsek model. Following quenching from the high-temperature coil phase to a low-temperature state point, we study the coarsening kinetics via molecular dynamics (MD) simulations using the Langevin thermostat. For the passive polymer case the low-temperature equilibrium state is a compact globule. The results from our MD simulations reveal that though the globular state is also the typical final state in the active case, the nonequilibrium pathways to arrive at such a state differ from the picture for the passive case due to the alignment interaction among the beads. We notice that deviations from the intermediate “pearl-necklace”-like arrangement, which is observed in the passive case, and the formation of more elongated dumbbell-like structures increase with increasing activity. Furthermore, it appears that while a small active force on the beads certainly makes the coarsening process much faster, there exists a nonmonotonic dependence of the collapse time on the strength of active interaction. We quantify these observations by comparing the scaling laws for the collapse time and growth of pearls with the passive case.

Graphical abstract: Effects of alignment activity on the collapse kinetics of a flexible polymer

Article information

Article type
Paper
Submitted
17 Jul 2021
Accepted
28 Nov 2021
First published
13 Jan 2022

Soft Matter, 2022,18, 1978-1990

Effects of alignment activity on the collapse kinetics of a flexible polymer

S. Paul, S. Majumder, S. K. Das and W. Janke, Soft Matter, 2022, 18, 1978 DOI: 10.1039/D1SM01055G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements