Issue 10, 2022

A (μ-hydrido)diborane(4) anion and its coordination chemistry with coinage metals

Abstract

A tetra(o-tolyl) (μ-hydrido)diborane(4) anion 1, an analogue of [B2H5] species, was facilely prepared through the reaction of tetra(o-tolyl)diborane(4) with sodium hydride. Unlike common sp2–sp3 diborane species, 1 exhibited a σ-B–B bond nucleophilicity towards NHC-coordinated transition-metal (Cu, Ag, and Au) halides, resulting in the formation of η2-B–B bonded complexes 2 as confirmed by single-crystal X-ray analyses. Compared with 1, the structural data of 2 imply significant elongations of B–B bonds, following the order Au > Cu > Ag. DFT studies show that the diboron ligand interacts with the coinage metal through a three-center-two-electron B–M–B bonding mode. The fact that the B–B bond of the gold complex is much prolonged than the related Cu and Ag compounds might be ascribed to the superior electrophilicity of the gold atom.

Graphical abstract: A (μ-hydrido)diborane(4) anion and its coordination chemistry with coinage metals

Supplementary files

Article information

Article type
Edge Article
Submitted
18 Jan 2022
Accepted
10 Feb 2022
First published
11 Feb 2022
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2022,13, 3009-3013

A (μ-hydrido)diborane(4) anion and its coordination chemistry with coinage metals

X. Mao, J. Zhang, Z. Lu and Z. Xie, Chem. Sci., 2022, 13, 3009 DOI: 10.1039/D2SC00318J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements