Issue 5, 2022

α-Diimine synthesis via titanium-mediated multicomponent diimination of alkynes with C-nitrosos

Abstract

α-Diimines are commonly used as supporting ligands for a variety of transition metal-catalyzed processes, most notably in α-olefin polymerization. They are also precursors to valuable synthetic targets, such as chiral 1,2-diamines. Their synthesis is usually performed through acid-catalyzed condensation of amines with α-diketones. Despite the simplicity of this approach, accessing unsymmetrical α-diimines is challenging. Herein, we report the Ti-mediated intermolecular diimination of alkynes to afford a variety of symmetrical and unsymmetrical α-diimines through the reaction of diazatitanacyclohexadiene intermediates with C-nitrosos. These diazatitanacycles can be readily accessed in situ via the multicomponent coupling of Ti[triple bond, length as m-dash]NR imidos with alkynes and nitriles. The formation of α-diimines is achieved through formal [4 + 2]-cycloaddition of the C-nitroso to the Ti and γ-carbon of the diazatitanacyclohexadiene followed by two subsequent cycloreversion steps to eliminate nitrile and afford the α-diimine and a Ti oxo.

Graphical abstract: α-Diimine synthesis via titanium-mediated multicomponent diimination of alkynes with C-nitrosos

Supplementary files

Article information

Article type
Edge Article
Submitted
03 Nov 2021
Accepted
26 Dec 2021
First published
27 Dec 2021
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2022,13, 1469-1477

α-Diimine synthesis via titanium-mediated multicomponent diimination of alkynes with C-nitrosos

C. W. Frye, D. T. Egger, E. Kounalis, A. J. Pearce, Y. Cheng and I. A. Tonks, Chem. Sci., 2022, 13, 1469 DOI: 10.1039/D1SC06111A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements