Issue 2, 2022

Chaperones mainly suppress primary nucleation during formation of functional amyloid required for bacterial biofilm formation

Abstract

Unlike misfolding in neurodegenerative diseases, aggregation of functional amyloids involved in bacterial biofilm, e.g. CsgA (E. coli) and FapC (Pseudomonas), is carefully regulated. However, it is unclear whether functional aggregation is inhibited by chaperones targeting pathological misfolding and if so by what mechanism. Here we analyze how four entirely different human chaperones or protein modulators (transthyretin, S100A9, Bri2 BRICHOS and DNAJB6) and bacterial CsgC affect CsgA and FapC fibrillation. CsgA is more susceptible to inhibition than FapC and the chaperones vary considerably in the efficiency of their inhibition. However, mechanistic analysis reveals that all predominantly target primary nucleation rather than elongation or secondary nucleation, while stoichiometric considerations suggest that DNAJB6 and CsgC target nuclei rather than monomers. Inhibition efficiency broadly scales with the chaperones' affinity for monomeric CsgA and FapC. The chaperones tend to target the most aggregation-prone regions of CsgA, but do not display such tendencies towards the more complex FapC sequence. Importantly, the most efficient inhibitors (Bri2 BRICHOS and DNAJB6) significantly reduce bacterial biofilm formation. This commonality of chaperone action may reflect the simplicity of functional amyloid formation, driven largely by primary nucleation, as well as the ability of non-bacterial chaperones to deploy their proteostatic capacities across biological kingdoms.

Graphical abstract: Chaperones mainly suppress primary nucleation during formation of functional amyloid required for bacterial biofilm formation

Supplementary files

Article information

Article type
Edge Article
Submitted
20 Oct 2021
Accepted
11 Dec 2021
First published
13 Dec 2021
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY license

Chem. Sci., 2022,13, 536-553

Chaperones mainly suppress primary nucleation during formation of functional amyloid required for bacterial biofilm formation

M. Nagaraj, Z. Najarzadeh, J. Pansieri, H. Biverstål, G. Musteikyte, V. Smirnovas, S. Matthews, C. Emanuelsson, J. Johansson, J. N. Buxbaum, L. Morozova-Roche and D. E. Otzen, Chem. Sci., 2022, 13, 536 DOI: 10.1039/D1SC05790A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements