Issue 49, 2022

Effects of fluorine bonding and nonbonding interactions on 19F chemical shifts

Abstract

19 F-NMR signals are sensitive to local electrostatic fields and are useful in probing protein structures and dynamics. Here, we used chemically identical ortho-F nuclei in N-phenyl γ-lactams to investigate the relationship between 19F NMR chemical shifts and local environments. By varying the structures at the C5- and C7-substituents, we demonstrated that 19F shifts and Hammett coefficients in Hammett plots follow typical relationships in bonding interactions, while manifesting reverse correlations in nonbonding contacts. Quantum mechanics calculations revealed that one of the ortho-F nuclei engages in n → π* orbital delocalization between F lone pair electrons (n) and a C[double bond, length as m-dash]O/Ar[double bond, length as m-dash]N antibonding orbital (π*), and the other ortho-F nucleus exhibits n ↔ σ orbital polarization between the n electrons and the C–H σ bonding orbital. As 19F NMR spectroscopy find increasing use in molecular sensors and biological sciences, our findings are valuable for designing sensitive probes, elucidating molecular structures, and quantifying analytes.

Graphical abstract: Effects of fluorine bonding and nonbonding interactions on 19F chemical shifts

Supplementary files

Article information

Article type
Paper
Submitted
21 Oct 2022
Accepted
25 Oct 2022
First published
09 Nov 2022
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2022,12, 32082-32096

Effects of fluorine bonding and nonbonding interactions on 19F chemical shifts

Y. Lu, M. Sun and N. Xi, RSC Adv., 2022, 12, 32082 DOI: 10.1039/D2RA06660B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements