Issue 54, 2022, Issue in Progress

Preparation of high temperature NH3-SCR catalysts with carbonate as precursors by ball milling method

Abstract

High-temperature 10Ce–2La/TiO2 catalysts for selective catalytic reduction of NO with NH3 were prepared by the ball milling, impregnation and co-precipitation methods and their catalytic performance was compared. The effects of different starting materials of the ball milling method on the catalytic activity were investigated. The results showed that the 10Ce–2La/TiO2 catalyst prepared by the ball milling method using carbonates as starting materials exhibited the highest NO conversion, which was more than 80% in the temperature range of 330–550 °C. The as-prepared catalysts were characterized by XRD, TEM, and XPS. Results showed that the ball milling prepared 10Ce–2La/TiO2 had the advantages of uniform active site distribution, high oxygen storage capacity, and high Ce3+ and Oα ratio. The results of NH3-TPD and H2-TPR showed that the ball milling method not only improved the redox ability but also increased the quantities and concentration of the acidic sites. The green production and economically viable concept of this process provides a new solution for the production application of industrial catalysts.

Graphical abstract: Preparation of high temperature NH3-SCR catalysts with carbonate as precursors by ball milling method

Article information

Article type
Paper
Submitted
17 Oct 2022
Accepted
01 Dec 2022
First published
08 Dec 2022
This article is Open Access
Creative Commons BY license

RSC Adv., 2022,12, 35094-35102

Preparation of high temperature NH3-SCR catalysts with carbonate as precursors by ball milling method

N. Wang, L. Wang, H. Xie, Y. Liu, Y. Sun, C. Yang and C. Ge, RSC Adv., 2022, 12, 35094 DOI: 10.1039/D2RA06552E

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements