Issue 55, 2022, Issue in Progress

Transparent TiO2 thin films with high photocatalytic activity for indoor air purification

Abstract

The development of low-material-quantity, transparent, anatase TiO2 nanoparticle free thin films as photocatalytic materials together with a profound understanding of their photocatalytic activity under ultraviolet (UV-A) and visible (VIS) light is crucial for environmentally friendly indoor air photocatalytic coatings. In this work, a TiO2 thin film modified by an increased amount of acetylacetone in the precursor solution with a material quantity of 0.2 mg cm−2 was successfully deposited on a borosilicate glass substrate by ultrasonic spray pyrolysis. VOC degradation as a single model pollutant and in mixtures under different operating conditions was studied in a multi-section continuous flow reactor. Under UV-A the reaction rate constants for heptane and toluene oxidation as individual pollutants were 1.7 and 0.9 ppm s−1, respectively. In 9 ppm VOC mixtures of acetaldehyde, acetone, heptane and toluene all the compounds were completely oxidized in a reaction time of less than 50 s. The TiO2 film showed moderately high photocatalytic activity under VIS light. The conversions of acetaldehyde, acetone, heptane and toluene in 9 ppm VOC mixtures under VIS light reached 100, 100, 78 and 31%, respectively. The synthesized TiO2 film shows promising ability in indoor air purification from VOCs. The results of this study give an extensive estimation of the thin film's photocatalytic efficiency and provide valuable data for future applications in environmental remediation.

Graphical abstract: Transparent TiO2 thin films with high photocatalytic activity for indoor air purification

Supplementary files

Article information

Article type
Paper
Submitted
14 Oct 2022
Accepted
26 Nov 2022
First published
12 Dec 2022
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2022,12, 35531-35542

Transparent TiO2 thin films with high photocatalytic activity for indoor air purification

J. Sydorenko, A. Mere, M. Krunks, M. Krichevskaya and I. O. Acik, RSC Adv., 2022, 12, 35531 DOI: 10.1039/D2RA06488J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements