Issue 45, 2022, Issue in Progress

Second-phase-induced fluorescence quenching in non-equivalent substituted red phosphors

Abstract

Concentration quenching, which generally originates from serious energy migrations among the uniformly distributed luminescent centers in the host matrix, is a key factor to influence the luminescence properties of materials. Different from previous reports, we demonstrate a novel fluorescence-quenching mechanism attributable to the second-phase Eu2W2O9 in non-equivalent substituted SrWO4:xEu3+ phosphors. The crystal structure, elemental distribution, and luminescence properties of the as-prepared SrWO4:xEu3+ phosphors are systematically investigated. A second-phase Eu2W2O9 is confirmed when the Eu3+-doping concentration exceeds 20%, which produces the new structure defects and energy-transfer paths, resulting in fluorescence quenching in this material. This finding gives a new perspective to analyze the concentration-quenching mechanism of the non-equivalent substituted phosphors and can help in the design of new, efficient luminescence materials. In addition, the as-prepared SrWO4:xEu3+ phosphors exhibit a strong intrinsic excitation in the range of 355–425 nm, which is accompanied by the Commission Internationale de I'Eclairage (CIE) coordinates at (0.653, 0.347) and stable color purity of up to 94.52%. A packaged white light-emitting diode with CIE chromaticity coordinates of (0.398, 0.335), correlated color temperature of 3132 K, and color rendering index of 84.3 is fabricated by SrWO4:20%Eu3+ phosphors with blue BAM:Eu2+ and green YAGB:Tb3+ phosphors in a near-ultraviolet chip.

Graphical abstract: Second-phase-induced fluorescence quenching in non-equivalent substituted red phosphors

Supplementary files

Article information

Article type
Paper
Submitted
07 Sep 2022
Accepted
30 Sep 2022
First published
21 Oct 2022
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2022,12, 29338-29345

Second-phase-induced fluorescence quenching in non-equivalent substituted red phosphors

J. Chen, X. Yang, C. Jiang, Y. Wang, L. Zhou and M. Wu, RSC Adv., 2022, 12, 29338 DOI: 10.1039/D2RA05647J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements