Issue 49, 2022

Development of efficient bi-functional g-C3N4@MOF heterojunctions for water splitting

Abstract

Herein we report the development of highly efficient heterojunctions by combining n-type g-C3N4 and MOFs as bi-functional photoelectrocatalysts towards the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). g-C3N4@MIL-125(Ti) and g-C3N4@UiO-66 have been synthesized via in situ incorporation of pre-synthesized g-C3N4 nanoparticles into MIL-125(Ti) and UiO-66. Bare MIL-125(Ti) and UiO-66 are also prepared for comparison. All the synthesized samples have been characterized by Powder X-ray Diffraction analysis, Fourier Transform Infrared Spectroscopic analysis, Scanning Electron Microscopic analysis, Energy Dispersive X-ray Spectrometry and UV-Vis Spectroscopic analysis. Cyclic voltammetry and linear sweep voltammetry studies have been carried out for all samples which indicates that under visible light exposure the g-C3N4@MIL-125(Ti)/NF heterojunction achieved a current density of 10 mA cm−2 at just 86 and 173 mV overpotential for the HER and OER, respectively. Moreover, all the synthesized samples display significant stability and generate a constant current density up to 1000 cyles during water electrolysis performed at a constant applied potential 1.5 V.

Graphical abstract: Development of efficient bi-functional g-C3N4@MOF heterojunctions for water splitting

Supplementary files

Article information

Article type
Paper
Submitted
05 Sep 2022
Accepted
21 Oct 2022
First published
10 Nov 2022
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2022,12, 32110-32118

Development of efficient bi-functional g-C3N4@MOF heterojunctions for water splitting

M. Fiaz, N. Carl, M. Kashif, M. A. Farid, N. N. Riaz and M. Athar, RSC Adv., 2022, 12, 32110 DOI: 10.1039/D2RA05594E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements