Issue 48, 2022, Issue in Progress

Comparison of surface passivation modification of two mordenite zeolites and their application on the isomerisation of o-ethyltoluene

Abstract

During the isomerisation of o-ethyltoluene (O-ET) to produce m-ethyltoluene (M-ET) and p-ethyltoluene (P-ET), it is crucial to improve the isomerisation selectivity and reduce side reactions, such as disproportionation, alkyl transfer, and splitting. In this study, in order to improve the selectivities toward M-ET and P-ET during O-ET isomerisation, both the commercial micropore mordenite (HM) and the prepared micro–mesoporous mordenite (HM–M) were treated through chemical liquid deposition using tetraethyl orthosilicate (TEOS) and 3,5-dimethylphenylmagnesium bromide (DPB), respectively. Thereafter, their structure, porosity, and acidity were characterized via X-ray diffraction, transmission electron microscopy, inductively coupled plasma, N2 sorption, temperature-programmed desorption of ammonia, Fourier-transform infrared spectroscopy of pyridine and 2,6-di-tert-butylpyridine, and thermal analysis. The deposition mechanism of DPB was also discussed. The results showed that TEOS could shrink and block the micropores of mordenite. By contrast, DPB passivated the external surface acidity and did not affect the micropore structure. Moreover, HM modified using DPB significantly shortened the self-coking process, improved the product selectivities for M-PT and P-ET as well as their stability, and prolonged the catalytic life. When the amount of magnesium oxide (MgO) deposited on the HM zeolite was 4%, the product selectivities toward M-ET and P-ET increased from 67.27% to 77.54%, and the yields of M-ET and P-ET increased from 47.57% to 52.98%. However, the performance of the catalyst was not significantly enhanced on the HM–M, owing to the passivation of acidic sites in the mesopores by the TEOS and DPB.

Graphical abstract: Comparison of surface passivation modification of two mordenite zeolites and their application on the isomerisation of o-ethyltoluene

Supplementary files

Article information

Article type
Paper
Submitted
28 Aug 2022
Accepted
18 Oct 2022
First published
01 Nov 2022
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2022,12, 31326-31337

Comparison of surface passivation modification of two mordenite zeolites and their application on the isomerisation of o-ethyltoluene

X. Cao, K. Wang, L. Kong, Z. Gu and F. Wang, RSC Adv., 2022, 12, 31326 DOI: 10.1039/D2RA05390J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements