Issue 49, 2022, Issue in Progress

A stable Fe/Co bimetallic modified biochar for ofloxacin removal from water: adsorption behavior and mechanisms

Abstract

In this study, Fe–Co-modified biochar (FMBC) loaded with iron (Fe) and cobalt (Co) bimetals after NaOH activation was prepared by pyrolysis using forestry waste cedar bark as a raw material to study its properties and the adsorption of ofloxacin (OFX). The surface structure and chemical properties were analyzed by BET, SEM-EDS, XRD, XPS, and FTIR characterization, and the results showed that the FMBC possessed a larger specific surface area and abundant surface functional groups. FMBC conformed to pseudo-second-order kinetic and Langmuir isotherm models, indicating that the OFX adsorption process on FMBC was a monolayer adsorption process and controlled by chemisorption. The saturation adsorption capacity of FMBC was 10 times higher than that of cedar bark biochar (BC). In addition, the effects of initial pH and coexisting ions on the adsorption process were investigated, and FMBC showed good adsorption, with the best adsorption capacity at pH = 7. Multiple adsorption mechanisms, including physical and chemical interactions, were involved in the adsorption of OFX by FMBC. TG, metal leaching, different water sources, and VSM tests showed that FMBC had good stability and was easily separated from water. Finally, the reusability performance of FMBC was investigated by various methods, and after five cycles it could still reach 75.78–89.31% of the adsorption capacity before recycling. Therefore, the FMBC synthesized in this study is a promising new adsorbent.

Graphical abstract: A stable Fe/Co bimetallic modified biochar for ofloxacin removal from water: adsorption behavior and mechanisms

Article information

Article type
Paper
Submitted
25 Aug 2022
Accepted
24 Oct 2022
First published
04 Nov 2022
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2022,12, 31650-31662

A stable Fe/Co bimetallic modified biochar for ofloxacin removal from water: adsorption behavior and mechanisms

J. Hao, L. Wu, X. Lu, Y. Zeng, B. Jia, T. Luo, S. He and L. Liang, RSC Adv., 2022, 12, 31650 DOI: 10.1039/D2RA05334A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements