Issue 50, 2022, Issue in Progress

Sustainable synthesis of biomass-derived carbon quantum dots and their catalytic application for the assessment of α,β-unsaturated compounds

Abstract

Herein, we demonstrate a simple, reproducible, and environment-friendly strategy for the synthesis of carbon quantum dots (CQDs) utilizing the mango (Mangifera indica) kernel as a renewable green carbon source. Various analytical tools characterized the as-prepared CQDs. These fluorescent CQDs showed significant water solubility with a uniform size of about 6 nm. The as-synthesized CQDs show significantly enhanced catalytic activity for the production of α,β-unsaturated compounds from the derivatives of aromatic alkynes and aldehydes under microwave irradiation in aqueous media. A potential mechanistic pathway and role of carboxylic functionalities were also revealed via various control experiments. The protocol shows outstanding selectivity towards the assessment of α,β-unsaturated compounds over other possible products. A comparative evaluation suggested the as-synthesized CQDs show higher catalytic activity under microwave radiation as compared to the conventional ways. These recyclable CQDs represent a sustainable alternative to metals in synthetic organic chemistry. A cleaner reaction profile, low catalyst loading, economic viability and recyclability of the catalyst, atom economy, and comprehensive substrate applicability are additional benefits of the current protocol according to green chemistry.

Graphical abstract: Sustainable synthesis of biomass-derived carbon quantum dots and their catalytic application for the assessment of α,β-unsaturated compounds

Supplementary files

Article information

Article type
Paper
Submitted
19 Aug 2022
Accepted
02 Nov 2022
First published
14 Nov 2022
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2022,12, 32619-32629

Sustainable synthesis of biomass-derived carbon quantum dots and their catalytic application for the assessment of α,β-unsaturated compounds

S. Saini, K. Kumar, P. Saini, D. K. Mahawar, K. S. Rathore, S. Kumar, A. Dandia and V. Parewa, RSC Adv., 2022, 12, 32619 DOI: 10.1039/D2RA05201F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements