Issue 51, 2022, Issue in Progress

Effects of flow history on extensional rheological properties of wormlike micelle solution

Abstract

A wormlike micelle (WLM) solution is a complex fluid that forms when the surfactant concentration is high. It has rheological properties similar to those of polymer solutions. However, unlike polymer molecules, WLM chains possess the dynamic microstructure that can be reversibly broken and reassembled in flows. Therefore, the rheological properties and flow behavior of WLM solutions have attracted much attention owing to their unique dynamic microstructures. However, the effects of the flow history on the extensional rheological properties of WLM solutions remain unclear. In this study, the change in the extensional rheological properties of WLM solutions depending upon on their shear flow histories was investigated by combining the dripping-onto-substrate/capillary break-up extensional rheometry technique with a compressed gas flow (stop-flow) control method. This approach precisely controls the shear flow histories of the WLM solutions. The results revealed that the shear flow history has a substantial impact on elongational rheological properties such as relaxation time. They also showed that the effects of the characteristic shear rate are highly dependent on the surfactant concentration. We expect that the current findings can be applied to understand the extensional rheological properties of complex fluids in industrially relevant processes such as coating and printing.

Graphical abstract: Effects of flow history on extensional rheological properties of wormlike micelle solution

Article information

Article type
Paper
Submitted
22 Jul 2022
Accepted
07 Nov 2022
First published
16 Nov 2022
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2022,12, 32903-32911

Effects of flow history on extensional rheological properties of wormlike micelle solution

I. Jang, W. J. Lee, D. Jin and J. M. Kim, RSC Adv., 2022, 12, 32903 DOI: 10.1039/D2RA04538A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements