Issue 38, 2022, Issue in Progress

Postsynthetic of MIL-101-NH2 MOFs supported on PVDF membrane for REEs recovery from waste phosphor

Abstract

With the increasing demand for rare earth elements (REEs) due to their wide application in high technology, their recovery and separation from waste sources has gradually come onto the agenda. Herein, a new kind of MIL-101-NH2 (M1N) MOF functionalized with diethanol anhydride (DGA) incorporated into a polyvinylidene fluoride (PVDF) membrane (DGA-M1N@PVDF) has been fabricated for the sorption of REEs from a simulated acid leaching solution of waste phosphor, which contains a large amount of REEs. FTIR, TGA, XRD, fluorescence spectra and XPS analysis were used to characterize the synthesized composite membrane. Batch tests were employed to determine the optimal sorption conditions for Y and Eu adsorbed on DGA-M1N@PVDF adsorbent, such as pH (1–5), content of M1N MOFs (0–40 wt%), contact time (10–180 min) and ion concentration (0–20 mg L−1). Maximum adsorption capacities for Y and Eu on DGA-M1N@PVDF reached 991.7 μg g−1 and 98.76 μg g−1 for trace REE solution, respectively. Moreover, a pseudo-second-order kinetic model accurately described the sorption process, and the plotted isothermal data indicated that the Langmuir model was more suitable than the Freundlich model for Y and Eu sorption with monolayer and chemical adsorption. Meanwhile, FTIR and XPS analyses revealed that the Y and Eu adsorption on the DGA-M1N@PVDF composite membrane was mainly caused by the N and O atoms of the –CONH or –COOH groups coordinated with metal ions. Furthermore, after five cycles, the recovery efficiency by DGA-M1N@PVDF for REEs remains above 82% and the XRD patterns were consistent with the original sample, which implied that the DGA-M1N@PVDF membrane has preferable stability, recyclability and good efficiency in REE separation from waste phosphor solutions.

Graphical abstract: Postsynthetic of MIL-101-NH2 MOFs supported on PVDF membrane for REEs recovery from waste phosphor

Article information

Article type
Paper
Submitted
08 Jul 2022
Accepted
16 Aug 2022
First published
31 Aug 2022
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2022,12, 24670-24680

Postsynthetic of MIL-101-NH2 MOFs supported on PVDF membrane for REEs recovery from waste phosphor

W. Qin, A. Yu, X. Han, J. Wang, J. Sun, J. Zhang and Y. Weng, RSC Adv., 2022, 12, 24670 DOI: 10.1039/D2RA04224J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements