Issue 35, 2022

Preparation and study of the flame retardant properties of C60/PMMA microspheres

Abstract

In this paper, highly flame retardant C60/PMMA composites were prepared using an in situ polymerization method by introducing fullerene (C60) into polymethyl methacrylate (PMMA) to improve its combustion characteristics. The apparent morphologies of PMMA and C60/PMMA microspheres were observed by scanning electron microscopy (SEM), and the structure was characterized by infrared spectroscopy (FT-IR). The thermal stability and flame retardancy were characterized using a synchronous thermal analyzer, a cone calorimeter and an oxygen index tester. The results show that the maximum initial decomposition temperature of C60/PMMA-2 (prepared using C60 with a concentration of 2 mg mL−1) is 234.89 °C, which is about 59.89 °C higher than that of PMMA, and the thermal stability is the best. The limiting oxygen index of the C60/PMMA-2 composite is 21.8, which is 28.2% higher than that of pure PMMA. In addition, the peak heat release rate (PHRR) of C60/PMMA is reduced by 630.4 kW m−2 when compared with pure PMMA, which means that the flame retardant property is improved. Meanwhile, the mechanical properties of the PMMA are also improved by adding C60.

Graphical abstract: Preparation and study of the flame retardant properties of C60/PMMA microspheres

Article information

Article type
Paper
Submitted
13 Jun 2022
Accepted
22 Jul 2022
First published
12 Aug 2022
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2022,12, 22623-22630

Preparation and study of the flame retardant properties of C60/PMMA microspheres

L. Xu, J. Jiang, L. Ni, Z. Chen and C. Li, RSC Adv., 2022, 12, 22623 DOI: 10.1039/D2RA03642H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements