Issue 34, 2022

Modification of C.I. Pigment Red 146 with surfactants and graphene oxide

Abstract

Organic pigments are important in a range of fields, from printing ink to industrial coatings. Azo pigments are some of the most common pigments in use today, but they typically have poor solvent solubility and tend to agglomerate. Consequently, the size and crystal structure of the pigment particles has a crucial effect on their optical and physical properties, such as color strength and solvent resistance, respectively. Several technologies, such as microreactors, have been developed to control pigment particle size, but an in-depth study of the effects of modification conditions on pigment properties (color, flowability, and solvent resistance) has not been reported to date. Therefore, in this paper, we report the surface modification of C.I. Pigment Red 146 particles using anionic (Igepon T) and non-ionic surfactants (Peregal O-25) and additives (DB-60 as the second diazo component and graphene oxide) on the pigment properties. In addition, we examined the effect of hydrothermal treatment at different temperatures on the same properties. The various modifications resulted in an increase in the solvent resistance, a reduction in the particle size (from 30.581 to 12.252 μm), a narrowing of the particle size distribution, and an increase in hydrophilicity. In addition, the color brightness and brilliance were significantly improved, and the maximum color strength reached 112.6%. These findings have applications for the development of pigments having enhanced color properties, solvent resistance, and processability.

Graphical abstract: Modification of C.I. Pigment Red 146 with surfactants and graphene oxide

Article information

Article type
Paper
Submitted
18 Apr 2022
Accepted
12 Jul 2022
First published
08 Aug 2022
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2022,12, 21859-21865

Modification of C.I. Pigment Red 146 with surfactants and graphene oxide

D. Lv, Z. Zhang, J. Zhang, X. Zhang, L. Liu, Y. Gong, J. Zhao and Y. Li, RSC Adv., 2022, 12, 21859 DOI: 10.1039/D2RA02496A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements