Issue 30, 2022, Issue in Progress

Controlled synthesis of open-mouthed epitope-imprinted polymer nanocapsules with a PEGylated nanocore and their application for fluorescence detection of target protein

Abstract

Epitope imprinting is an effective way to create artificial receptors for protein recognition. Surface imprinting with immobilized templates and sacrificial supports can generate high-quality imprinted cavities of homogeneous orientation and good accessibility, but it is still challenging to fabricate nanoscale imprinted materials by this approach. Herein, we propose a method for the controlled synthesis of open-mouthed epitope-imprinted polymer nanocapsules (OM-MIP NCs) by limiting the imprinting polymerization on the template-bearing side of the Janus nanoparticles (JNPs). Concurrent bromoacetyl (Ac–Br) and 2-bromoisobutyryl (iB–Br) functionalization of the major portion of SiO2 nanoparticles is achieved via the molten-wax-in-water Pickering emulsion approach. The cysteinyl-derived epitope templates are immobilized through the Ac–Br groups, and then surface imprinting is fulfilled via ATRP initiated by the iB–Br groups. The SiO2 supports are partially etched and then PEGlated, affording OM-MIP NCs with a PEGylated nanocore. The inside nanocore can facilitate collection of the NCs by centrifugation, and its PEGylation can inhibit non-specific binding. The surface imprinting can be optimized through the ATRP time, and the etching can be tailored via the concentration of NH4HF2 employed. For proof-of-concept, with a C-terminus nonapeptide of bovine serum albumin (BSA) chosen as a model epitope and polymerizable carbon dots added to the pre-polymerization solution, fluorescent OM-MIP NCs were fabricated for BSA sensing. The as-synthesized NCs exhibited satisfactory detection performance, with an imprinting factor of 6.1, a limit of detection of 38.1 nM, a linear range of 0.25–6 μM, and recoveries of 98.0 to 104.0% in bovine serum samples.

Graphical abstract: Controlled synthesis of open-mouthed epitope-imprinted polymer nanocapsules with a PEGylated nanocore and their application for fluorescence detection of target protein

Supplementary files

Article information

Article type
Paper
Submitted
09 Apr 2022
Accepted
27 Jun 2022
First published
06 Jul 2022
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2022,12, 19561-19570

Controlled synthesis of open-mouthed epitope-imprinted polymer nanocapsules with a PEGylated nanocore and their application for fluorescence detection of target protein

X. Feng, S. Jin, D. Li and G. Fu, RSC Adv., 2022, 12, 19561 DOI: 10.1039/D2RA02298B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements