Issue 26, 2022, Issue in Progress

Adsorption of gas molecules on buckled GaAs monolayer: a first-principles study

Abstract

The design of sensitive and selective gas sensors can be significantly simplified if materials that are intrinsically selective to target gas molecules can be identified. In recent years, monolayers consisting of group III–V elements have been identified as promising gas sensing materials. In this article, we investigate gas adsorption properties of buckled GaAs monolayer using first-principles calculations within the framework of density functional theory. We examine the adsorption energy, adsorption distance, charge transfer, and electron density difference to study the strength and nature of adsorption. We calculate the change in band structure, work function, conductivity, density of states, and optical reflectivity for analyzing its prospect as work function-based, chemiresistive, optical, and magnetic gas sensor applications. In this regard, we considered the adsorption of ten gas molecules, namely NH3, NO2, NO, CH4, H2, CO, SO2, HCN, H2S, and CO2, and noticed that GaAs monolayer is responsive to NO, NO2, NH3, and SO2 only. Specifically, NH3, SO2 and NO2 chemisorb on the GaAs monolayer and change the work function by more than 5%. While both NO and NO2 are found to be responsive in the far-infrared (FIR) range, NO shows better spin-splitting property and a significant change in conductivity. Moreover, the recovery time at room temperature for NO is observed to be in the sub-millisecond range suggesting selective and sensitive NO response in GaAs monolayer.

Graphical abstract: Adsorption of gas molecules on buckled GaAs monolayer: a first-principles study

Article information

Article type
Paper
Submitted
29 Mar 2022
Accepted
30 May 2022
First published
06 Jun 2022
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2022,12, 16732-16744

Adsorption of gas molecules on buckled GaAs monolayer: a first-principles study

R. Shahriar, O. Hassan and Md. K. Alam, RSC Adv., 2022, 12, 16732 DOI: 10.1039/D2RA02030K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements