Issue 17, 2022

Thiophene derivatives as corrosion inhibitors for 2024-T3 aluminum alloy in hydrochloric acid medium

Abstract

Thiophene derivatives, namely (E)-thiophene-2-carbaldehyde oxime (OXM) and (E)-5-(thiophen-2-yl)-1H-tetrazole (TET), were synthesized and characterized via 1H and 13C NMR. Furthermore, their inhibitory property for AA2024-T3 in 1 M HCl solution was investigated via electrochemical impedance spectroscopy and potentiodynamic polarization at 293 K, together with DFT/B3LYP-based calculations. Numerous global and local descriptors of reactivity such as EHOMO, ELUMO, energy gap, electronegativity (χ), hardness (η), and frontier molecular orbital repartitions were investigated to describe the reactivity of each molecule. Alternatively, Monte Carlo simulations were performed under the solvation condition on the Al (111) surface to understand the adsorption behavior of the as-studied inhibitors deeply. The inhibition efficiency increased with an increase in the inhibitor concentration, achieving maximum values of 94.0% and 96% at 10−3 M, respectively. The polarization curves showed that the examined compounds act as mixed-type inhibitors. In addition, the adsorption of these compounds obeyed the Al Awady, Flory-Huggins and Temkin isotherms. The surface characterization analysis via SEM/EDX confirmed the presence of a barrier layer covering the aluminum surface. The experimental inhibition efficiencies were correlated with global descriptors, which confirmed that this theoretical study is useful for the protection of aluminum alloy metal in an acidic medium.

Graphical abstract: Thiophene derivatives as corrosion inhibitors for 2024-T3 aluminum alloy in hydrochloric acid medium

Associated articles

Article information

Article type
Paper
Submitted
10 Jan 2022
Accepted
17 Mar 2022
First published
01 Apr 2022
This article is Open Access
Creative Commons BY license

RSC Adv., 2022,12, 10321-10335

Thiophene derivatives as corrosion inhibitors for 2024-T3 aluminum alloy in hydrochloric acid medium

N. Arrousse, Y. Fernine, N. Al-Zaqri, A. Boshaala, E. Ech-chihbi, R. Salim, F. El Hajjaji, A. Alami, M. E. Touhami and M. Taleb, RSC Adv., 2022, 12, 10321 DOI: 10.1039/D2RA00185C

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements