Issue 14, 2022, Issue in Progress

HPTLC screening of saccharin in beverages by densitometry quantification and SERS confirmation

Abstract

As a widely used artificially synthesized sweetener, saccharin faced numerous disputes associated with food safety. Therefore, its fast analysis in food is of crucial importance. In this study, an analytical method for the fast and reliable screening of saccharin in various beverages was established and validated, by combining HPTLC with densitometry and surface enhanced Raman spectroscopy. The diluted sample liquid was directly sprayed and separated on a silica gel plate using a mixture of ethyl acetate and acetic acid in the ratio of 9 : 1 (v/v) as the mobile phase. The separation realized full isolation of the analyte from background noises. Then, a densitometry analysis in the absorption–reflection mode (working wavelength 230 nm) was optimized to obtain quantitative data, showing a good linearity in the range of 40–200 ng per band (R2 = 0.9988). The limits of detection and quantification were determined to be 6 and 20 ng per band, respectively, which were equal to 6 and 20 mg kg−1. The quantitative results also displayed satisfactory accuracy and precision, with a spike-recovery rate within 87.75–98.14% (RSD <5.13%). As a cost-efficient tool for confirmation, surface enhanced Raman spectroscopy was employed to profile the molecular fingerprint of the analyte eluted from the plate layer. Under optimized conditions (785 nm laser as the excitation light and silver nanoparticle loaded glass fiber paper as the active substrate), the elution of the saccharin band exhibited stable and sensitive surface enhanced Raman spectroscopy signals. This study demonstrated that HPTLC could be a versatile platform for food analysis, with outstanding simplicity and cost-efficiency.

Graphical abstract: HPTLC screening of saccharin in beverages by densitometry quantification and SERS confirmation

Supplementary files

Article information

Article type
Paper
Submitted
29 Dec 2021
Accepted
08 Feb 2022
First published
16 Mar 2022
This article is Open Access
Creative Commons BY license

RSC Adv., 2022,12, 8317-8322

HPTLC screening of saccharin in beverages by densitometry quantification and SERS confirmation

Q. Chen, H. Hou, D. Zheng, X. Xu, X. Xi and Y. Chen, RSC Adv., 2022, 12, 8317 DOI: 10.1039/D1RA09416E

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements