Issue 9, 2022, Issue in Progress

Statistical analysis of PN clusters in Mo/VFe protein crystals using a bond valence method toward their electronic structures

Abstract

Nowadays, large numbers of MoFe proteins have been reported and their crystal data obtained by X-ray crystallography and uploaded to the Protein Data Bank (PDB). By big data analysis using a bond valence method, we make conclusions based on 79 selected PN in all 119 P-clusters of 53 MoFe proteins and 10 P-clusters of 5 VFe proteins from all deposited crystallographic data of the PDB. In the condition of MoFe protein crystals, the resting state PN clusters are proposed to have the formal oxidation state of 2Fe(III)6Fe(II), hiding two oxidized electron holes with high electron delocalization. The calculations show that Fe1, Fe2, Fe5, Fe6 and Fe7 perform unequivocally as Fe2+, and Fe3 is remarkably prone to Fe(III), while Fe4 and Fe8 have different degrees of mixed valences. For PN clusters in VFe protein crystals, Fe1, Fe2, Fe4, Fe5 and Fe6 tend to be Fe2+, but the electron distributions rearrange with Fe7 and Fe8 being more oxidized mixed valences, and Fe3 presenting a little more reductive mixed valence than that in MoFe proteins. In terms of spatial location, Fe3 and Fe6 in P-clusters of MoFe proteins are calculated as the most oxidized and reduced irons, which have the shortest distances from homocitrate in the FeMo-cofactor and [Fe4S4] cluster, respectively, and thus could function as potential electron transport sites. This work shows different electron distributions of PN clusters in Mo/VFe protein crystals, from those obtained from previous data from solution with excess reducing agent from which it was concluded that PN clusters are all ferrous according to Mössbauer and electron paramagnetic resonance spectra.

Graphical abstract: Statistical analysis of PN clusters in Mo/VFe protein crystals using a bond valence method toward their electronic structures

Supplementary files

Article information

Article type
Paper
Submitted
21 Nov 2021
Accepted
26 Jan 2022
First published
11 Feb 2022
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2022,12, 5214-5224

Statistical analysis of PN clusters in Mo/VFe protein crystals using a bond valence method toward their electronic structures

C. Yuan, W. Jin and Z. Zhou, RSC Adv., 2022, 12, 5214 DOI: 10.1039/D1RA08507G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements