K-doped Li2ZnTi3O8/C as an efficient anode material with high performance for Li-ion batteries
Abstract
Li2ZnTi3O8/C and Li1.9K0.1ZnTi3O8/C were successfully synthesized using the sol–gel method. Doping K apparently yielded a wider tunnel, helpful for increasing the rate of transport of lithium ions, and furthermore yielded excellent electrochemical properties. The first discharge capacity for Li1.9K0.1ZnTi3O8/C was 352.9 mA h g−1 at a current density of 200 mA g−1. Li1.9K0.1ZnTi3O8/C also performed stably, retaining a capacity of 323.7 mA h g−1 at the 100th cycle, indicative of its excellent cycling properties. In the rate performance test, Li1.9K0.1ZnTi3O8/C showed at the first cycle a high discharge capacity of 379.5 mA h g−1 for a current density of 50 mA g−1 and a capacity of 258.9 mA h g−1 at 1000 mA g−1. The results indicated that K-doping should be considered a useful method for improving electrochemical performances.