Issue 6, 2022, Issue in Progress

The effect of oxygen impurities on the stability and structural properties of vacancy-ordered and -disordered ZrCx

Abstract

Theoretical calculations predict several long-range ordered sub-stoichiometric zirconium carbide phases to be stable at low temperature, rather than a random (disordered solution) distribution of vacancies. However, experimental synthesis of vacancy-ordered phases is extremely challenging and not all predicted phases have been experimentally observed. It has been hypothesised that the inevitable oxygen contamination in experimental samples may affect the vacancy ordering. In this work, the stability and structural properties of the vacancy-ordered and vacancy-disordered phases are investigated as a function of oxygen defect concentration using first-principles calculations. The observed trends are explained in terms of changes to the local bonding in the presence of varying amounts of oxygen and vacancies. It is found that the relative stability of the ordered phases (compared to the disordered phase at the same composition) decreases as oxygen concentration increases, and some vacancy-ordered phases are destabilised by the level of oxygen impurities found in experimental samples. This suggests that oxygen contamination is a contributing factor to the challenge of synthesising ordered zirconium carbides, and gives insight that may assist fabrication in the future. The volume of all ZrCx (x ≤ 1) phases was found to decrease with increasing oxygen concentration, which can be attributed to the different ionocovalent nature of the C–Zr and O–Zr bonds. The volume of the vacancy-ordered phases within the expected oxygen solubility limit is greater than the disordered phase of the same composition, which is explained in terms of the relative bond strengths surrounding different vacancy distributions.

Graphical abstract: The effect of oxygen impurities on the stability and structural properties of vacancy-ordered and -disordered ZrCx

Supplementary files

Article information

Article type
Paper
Submitted
21 Oct 2021
Accepted
31 Dec 2021
First published
25 Jan 2022
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2022,12, 3198-3215

The effect of oxygen impurities on the stability and structural properties of vacancy-ordered and -disordered ZrCx

T. Davey and Y. Chen, RSC Adv., 2022, 12, 3198 DOI: 10.1039/D1RA07768F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements