Issue 2, 2022

Highly sensitive, room temperature operated gold nanowire-based humidity sensor: adoptable for breath sensing

Abstract

A novel, highly sensitive gold nanowire (AuNW) resistive sensor is reported here for humidity sensing in the relative humidity range of 11% to 92% RH as well as for breath sensing. Both humidity and breath sensors are widely needed. Despite a lot of research on humidity and breath sensors, there is a need for simple, inexpensive, reliable, sensitive and selective sensors, which will operate at room temperature. Here we have synthesized gold nanowires by a simple, wet chemical route. The nanowires synthesized by us are 4–7 nm in diameter and a few micrometers long. The nanowires are amine functionalized. The sensor was prepared by drop casting gold nanowires on an alumina substrate to form a AuNW layer with different thicknesses (10, 20, 30 μm). The AuNW sensor is highly selective towards humidity and shows minimum cross sensitivity towards other gases and organic vapors. At an optimum thickness of 20 μm, the humidity sensing performance of the AuNW sensor over 11% to 92% RH was found to be superior to that of 10 and 30 μm thick layers. The response time of the sensor is found to be 0.2 s and the recovery time is 0.3 s. The response of the AuNW sensor was 3.3 MΩ/% RH. Further, the AuNW sensor was tested for sensing human breathing patterns.

Graphical abstract: Highly sensitive, room temperature operated gold nanowire-based humidity sensor: adoptable for breath sensing

Article information

Article type
Paper
Submitted
11 Oct 2021
Accepted
06 Dec 2021
First published
05 Jan 2022
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2022,12, 1157-1164

Highly sensitive, room temperature operated gold nanowire-based humidity sensor: adoptable for breath sensing

P. V. Adhyapak, A. M. Kasabe, A. D. Bang, J. Ambekar and S. K. Kulkarni, RSC Adv., 2022, 12, 1157 DOI: 10.1039/D1RA07510A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements