Issue 18, 2022

Sustainable design of vanillin-based vitrimers using vinylogous urethane chemistry

Abstract

Research on bio-based covalent adaptable networks is popular nowadays in the search for an optimal implementation of thermoset materials and composites in a circular context. Herein, a vanillin derivative is integrated into vitrimers with promising material properties in which the vinylogous urethane associative chemistry has been used as a dynamic covalent chemistry platform. The vanillin derivative, 2-methoxyhydroquinone, is epoxidised and aminated by aqueous ammonia, with the formation of a bi-functional aromatic β-hydroxy-amine. The straightforward synthesis protocol is high yielding and up-scalable, without the need for any chromatographic purification step. The presented rigid, catalyst-free vitrimers have a high renewable carbon content (up to 86%), glass transition temperatures up to 80 °C and show very fast reprocessing and consequently a swift recyclability with relaxation times in the range of seconds by virtue of the applied β-hydroxy-amine functionality. This research thus provides a sustainable approach for the synthesis of vanillin-based vitrimers and fits in with growing interest for the design of recyclable crosslinked polymer materials.

Graphical abstract: Sustainable design of vanillin-based vitrimers using vinylogous urethane chemistry

Supplementary files

Article information

Article type
Paper
Submitted
21 Mar 2022
Accepted
04 Apr 2022
First published
07 Apr 2022

Polym. Chem., 2022,13, 2665-2673

Sustainable design of vanillin-based vitrimers using vinylogous urethane chemistry

S. Engelen, A. A. Wróblewska, K. De Bruycker, R. Aksakal, V. Ladmiral, S. Caillol and F. E. Du Prez, Polym. Chem., 2022, 13, 2665 DOI: 10.1039/D2PY00351A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements