Issue 35, 2022

Iron(iii)-catalyzed α-cyanation and carbonylation with 2-pyridylacetonitrile: divergent synthesis of α-amino nitriles and tetrahydroisoquinolinones

Abstract

Iron-catalyzed oxidative synthesis of N-aryl-substituted tetrahydroisoquinolines (THIQs) toward tetrahydroisoquinoline-based derivatives is reported. A wide range of α-amino nitriles and tetrahydroisoquinolinones are synthesized in moderate to good yields. This approach involves a new organic nitrile source, a cheap iron catalyst under an oxygen atmosphere, and temperature-controlled divergent synthesis and features complete selectivity and operational simplicity.

Graphical abstract: Iron(iii)-catalyzed α-cyanation and carbonylation with 2-pyridylacetonitrile: divergent synthesis of α-amino nitriles and tetrahydroisoquinolinones

Supplementary files

Article information

Article type
Communication
Submitted
05 Jul 2022
Accepted
22 Aug 2022
First published
23 Aug 2022

Org. Biomol. Chem., 2022,20, 7031-7035

Iron(III)-catalyzed α-cyanation and carbonylation with 2-pyridylacetonitrile: divergent synthesis of α-amino nitriles and tetrahydroisoquinolinones

F. Xu, F. Zhang, W. Wang, M. Yao, X. Lin, F. Yang, Y. Qian and Z. Chen, Org. Biomol. Chem., 2022, 20, 7031 DOI: 10.1039/D2OB01199A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements