Issue 4, 2022

Acylative kinetic resolution of racemic methyl-substituted cyclic alkylamines with 2,5-dioxopyrrolidin-1-yl (R)-2-phenoxypropanoate

Abstract

The diastereoselective acylation of a number of racemic methyl-substituted cyclic alkylamines with active esters of 2-phenoxypropanoic acid was studied in detail. The ester of (R)-2-phenoxypropanoic acid and N-hydroxysuccinimide was found to be the most selective agent. The highest stereoselectivity was observed in the kinetic resolution of racemic 2-methylpiperidine in toluene at −40 °C (selectivity factor s = 73) with the predominant formation of (R,R)-amide (93.7% de). To explain the observed stereoselectivity, DFT modelling of the transition states in the reactions of the title acylating agent with 2-methylpiperidine and 2-methylpyrrolidine was performed. The calculated values were in good agreement with experimental data. It has been demonstrated that the acylation proceeds via a concerted mechanism, in which the addition of an amine occurs simultaneously with the elimination of the hydroxysuccinimide fragment. The high stereoselectivity of the (R,R)-amide formation is largely ensured by the lower steric hindrances in the transition states as compared to the formation of (R,S)-amide.

Graphical abstract: Acylative kinetic resolution of racemic methyl-substituted cyclic alkylamines with 2,5-dioxopyrrolidin-1-yl (R)-2-phenoxypropanoate

Supplementary files

Article information

Article type
Paper
Submitted
26 Oct 2021
Accepted
22 Dec 2021
First published
22 Dec 2021

Org. Biomol. Chem., 2022,20, 862-869

Acylative kinetic resolution of racemic methyl-substituted cyclic alkylamines with 2,5-dioxopyrrolidin-1-yl (R)-2-phenoxypropanoate

D. A. Gruzdev, S. A. Vakarov, M. A. Korolyova, E. V. Bartashevich, A. A. Tumashov, E. N. Chulakov, M. A. Ezhikova, M. I. Kodess, G. L. Levit and V. P. Krasnov, Org. Biomol. Chem., 2022, 20, 862 DOI: 10.1039/D1OB02099D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements