Issue 42, 2022

Self-assembled mononuclear complexes: open metal sites and inverse dimension-dependent catalytic activity for the Knoevenagel condensation and CO2 cycloaddition

Abstract

To lessen the greenhouse effect, measures such as improving the recovery of crude oil and converting carbon dioxide (CO2) into valuable chemicals are necessary to create a sustainable low-carbon future. To this end, the development of efficient new oil-displacing agents and CO2 conversion has aroused great interest in both academia and industry. The Knoevenagel condensation and CO2 cycloaddition are the key reactions to solve the above problems. Four Cu- or Zn-based molecular complexes built from different ligands possessing hydrophilic–hydrophobic layers and different dimensionalities were chosen as solid catalysts for this study. Structural analysis revealed the presence of hydrophilic–hydrophobic layers and open metal sites in the low-dimensional complexes. To obtain deep insight into the reaction mechanism, first-principles density functional theory (DFT) calculations were carried out. These calculations confirmed that in the Knoevenagel condensation reaction, the final formation of benzylidenemalononitrile is the rate-determining step (an energy barrier (ΔE) value of 73.2 kJ mol−1). The zero-dimensional (0D) Cu molecular complex with unsaturated metal centers, hydrophilic and hydrophobic layers, exhibited higher catalytic activity (yield: 100%, temperature: room temperature, and time: 2 h) compared with one- and two-dimensional Cu complexes. In the presence of a 0D Zn complex co-catalyzed with Br in the CO2 cycloaddition reaction, the ΔE value reduces to 35.5 kJ mol−1 for the ring opening of styrene oxide (SO), which is significantly lower than Br catalyzed (80.9 kJ mol−1) reactions. The roles of unsaturated metal centers, hydrophilic–hydrophobic layers and dimensionality in the Knoevenagel condensation and CO2 cycloaddition were explained in the results of structure–activity relationships.

Graphical abstract: Self-assembled mononuclear complexes: open metal sites and inverse dimension-dependent catalytic activity for the Knoevenagel condensation and CO2 cycloaddition

Supplementary files

Article information

Article type
Paper
Submitted
25 Jul 2022
Accepted
21 Sep 2022
First published
24 Sep 2022

Nanoscale, 2022,14, 15897-15907

Self-assembled mononuclear complexes: open metal sites and inverse dimension-dependent catalytic activity for the Knoevenagel condensation and CO2 cycloaddition

H. Xu, L. Zhang, Y. Xing, Y. Yin, B. Tang and L. Bie, Nanoscale, 2022, 14, 15897 DOI: 10.1039/D2NR04103K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements