Issue 34, 2022

Self-assembly of colloidal single-layer carbon nitride

Abstract

We introduce a new concept of a “bottom-to-top” design of intercalate carbon nitride compounds based on the effects of self-assembly of colloidal single-layer carbon nitride (SLCN) sheets stabilized by tetraethylammonium hydroxide NEt4OH upon ambient drying of the water solvent. These effects include (i) formation of stage-1 intercalates of NEt4OH during the ambient drying of SLCN colloids on glass substrates and (ii) the spontaneous formation of layered hexagonally-shaped networks of SLCN sheets on freshly-cleaved mica surfaces. The dynamics of the intercalate formation was followed by in situ X-ray diffraction allowing different stages to be identified, including the deposition of a primary “wet” intercalate of hydrated NEt4OH and the gradual elimination of excessive water during its ambient drying. The intercalated NEt4+ cations show a specific “flattened” conformation allowing the dynamics of formation and structure of the intercalate to be probed by vibrational spectroscopies. The two-dimensional self-assembly on mica is assumed to be driven both by the internal hexagonal symmetry of heptazine units and by a templating effect of the mica surface.

Graphical abstract: Self-assembly of colloidal single-layer carbon nitride

Supplementary files

Article information

Article type
Paper
Submitted
24 Jun 2022
Accepted
11 Aug 2022
First published
11 Aug 2022
This article is Open Access
Creative Commons BY-NC license

Nanoscale, 2022,14, 12347-12357

Self-assembly of colloidal single-layer carbon nitride

O. Stroyuk, O. Raievska, C. J. Brabec, V. Dzhagan, Y. Havryliuk and D. R. T. Zahn, Nanoscale, 2022, 14, 12347 DOI: 10.1039/D2NR03477H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements