Issue 48, 2022

Enhancing the photoluminescence and cellular uptake of fluorescent carbon nanodots via cubosome lipid nanocarriers

Abstract

Carbon nanodots (C-dots) have attracted much attention for their use in the fields of bioimaging, drug delivery, and sensing due to their excellent fluorescent and photoluminescent properties, photostability, biocompatibility, and amenability to surface modification. Herein, we report a nanocomposite formulation of C-dots (<5 nm) encapsulated in lipid-based lyotropic liquid crystalline nanoparticles (∼250 nm) via either passive diffusion or electrostatic mechanisms. The physicochemical properties of the nanocomposite formulation including particle size, surface charge, internal cubic nanostructures, and pH-dependent fluorescent properties were characterised. Upon loading of C-dots into lipid nanoparticles, the highly ordered inverse bicontinuous cubic mesophase existed in the internal phase of the nanoparticles, demonstrated by synchrotron small angle X-ray scattering, molecular dynamic simulation and cryogenic transmission electron microscopy. The pH-dependent fluorescent property of the C-dots was modified via electrostatic interaction between the C-dots and cationic lipid nanoparticles, which further enhanced the brightness of C-dots through self-quenching prevention. The cytotoxicity and cellular uptake efficiency of the developed nanocomposites were also examined in an epithelial gastric adenocarcinoma cell line (AGS) and a macrophage cell line (stimulated THP-1). Compared to free C-dots, the uptake and cell imaging potential of the C-dot nanocomposites was significantly improved, by several orders of magnitude as demonstrated by cytoplasmic fluorescent intensities using confocal microscopy. Loading C-dots into mesoporous lipid nanocarriers presents a new way of modifying C-dot physicochemical and fluorescent properties, alternative to direct chemical surface modification, and advances the bioimaging potential of C-dots by enhancing cellular uptake efficiency and converging C-dot light emission.

Graphical abstract: Enhancing the photoluminescence and cellular uptake of fluorescent carbon nanodots via cubosome lipid nanocarriers

Supplementary files

Article information

Article type
Paper
Submitted
22 Jun 2022
Accepted
26 Oct 2022
First published
26 Oct 2022

Nanoscale, 2022,14, 17940-17954

Enhancing the photoluminescence and cellular uptake of fluorescent carbon nanodots via cubosome lipid nanocarriers

J. Zhai, L. Bao, A. K. Walduck, B. P. Dyett, X. Cai, M. Li, Z. Nasa and C. J. Drummond, Nanoscale, 2022, 14, 17940 DOI: 10.1039/D2NR03415H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements